

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Studies on Organometallic Compounds by FT-IR

Mengxia Xie^a; Xuejin Yang^a; Qiuchang Wang^a; Jinfang Zhi^b

^a Analytical and Testing Center of Beijing, Normal University, Beijing, The People's Republic of China

^b Department of Chemistry, Nankai University, Tianjin, The People's Republic of China

To cite this Article Xie, Mengxia , Yang, Xuejin , Wang, Qiuchang and Zhi, Jinfang(1996) 'Studies on Organometallic Compounds by FT-IR', *Spectroscopy Letters*, 29: 1, 53 — 60

To link to this Article: DOI: 10.1080/00387019608001580

URL: <http://dx.doi.org/10.1080/00387019608001580>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDIES ON ORGANOMETALLIC COMPOUNDS BY FT-IR

Keywords: Ferrocene; inter- and intramolecular hydrogen bonding; benzene as solvent; IR spectra.

**Mengxia Xie¹ Xuejin Yang² Qiuchang Wang²
Jinfang Zhi²**

1) Analytical and Testing Center of Beijing Normal University,
Beijing 100875, The People's Republic of China.

2) Department of Chemistry, Nankai University, Tianjin 300071,
The People's Republic of China.

ABSTRACTS

The different substituents of N-methylferrocene of aniline compounds were investigated by FT-IR spectrometer. On the basis of their IR data, the intra- and intermolecular hydrogen bonds between the hydrogen on nitrogen and ferrocenyl as well as benzene ring in molecules and benzene as solvent are discussed in solution of which CCl₄, benzene and cyclohexane as solvent. It has been found that the solvent and concentrations of the compounds greatly influence the forming of hydrogen bonding.

* Author to whom correspondence should be addressed.

INTRODUCTION

In molecules containing hydroxyl group, the s orbital of hydrogen in one molecule overlaps with p orbital of polar element(generally oxygen and nitrogen) in another molecule, then hydrogen bridge, which connects the two molecules tightly, is formed between the two molecules by hydrogen. We called it hydrogen bond. If there is a polar group Y except hydroxyl group in a molecules, and their steric distance is suitable, an intromolecular hydrogen bond can be formed.

Hydrogen bonding has been detected in many ways, including measurements of diple moments, solubility behavor,freezing-point lowering, and heats of mixing, but the most important way is by the effect of hydrogen bond on IR and other spectra. The IR frequencies of groups, such as O—H or C=O, are shifted when the group is hydrogen bonded. Hydrogen bonding always moves the peak toward lower frequencies. In many cases, in dilute solution, there is partial hydrogen bonding, that is, some OH groups are free and some are hydrogen bonded. In such case two peaks appear. Infrared spectroscopy can also distinguish between inter- and intramolecular bonding, since intermolecular peaks are intensified by an increase in concentration while intramolecular peaks are unaffected.

In the end of 1950s, when Trifan firstly discovered that the vibrational frequency of hydroxyl absorption lowers to 3574cm^{-1} in ferrocenyl compounds, scientists began to pay attention to the hydrogen bonding formed between hydroxy group and π —electron cloud. There is little difference between π —hydrogen bonds and general associated hydrogen bonds. The energies of π —hydrogen bonds are smaller than that of associated hydrogen bonds, the vibrational frequencies of π —hydrogen bonds are $15-50\text{cm}^{-1}$ lower than that of free hydroxy group. For instance, the ν_{OH} of cis—o—hydroxylphenol is 30cm^{-1} lower than that of its trans isomer.

It has been done a lot of work on the study of organometallic compounds by FT—IR. Semeriiishin[1] studied hexacyanoferrates of

aniline by IR; Marsegishvili [2]’s work of ferrocyanide and ferricyanide; Bencivenni [3], Phillips [4] and Feng Yan [5] use FTIR and Raman spectra to investigate ferrocene derivatives. There are also some reports [6—9] on intro- and inter-molecular hydrogen bonds in ferrocene.

EXPERIMENT

Spectra were obtained with a Nicolet 170SX FT-IR spectrometer. The thickness of liquid cell is 1mm. All reagents were A.R. grade, dried, redistilled.

Sample:	$\text{FcCH}_2\text{NH}-\text{Ar}-\text{R}$ (Fc: ferrocene)
I	$\text{R}=\text{p-Cl}$
II	$\text{R}=\text{p-Br}$
III	$\text{R}=\text{p-CH}_3$
IV	$\text{R}=\text{H}$
V	$\text{R}=\text{m-NO}_2$ (p: para; m: meta)

The samples were dissolved in tetrachloromethane(CCl_4), cyclohexane and benzene, respectively. Different concentrations of the samples in above solvents were obtained according to the amount of the samples dissolved.

RESULTS AND DISCUSSION

Intramolecular Hydrogen Bonding From the data shown in Table 1 and 2, it can be seen that the compounds have strong adsorption in the range of $3413-3428\text{cm}^{-1}$ in $\text{CCl}_4(10^{-1}\text{ mol} \cdot \text{dm}^{-3})$ and cyclohexane solution. But in more dilute $\text{CCl}_4(10^{-2}-10^{-3}\text{mol} \cdot \text{dm}^{-3})$ and cyclohexane solution, there are other weak adsorption ranging 3329cm^{-1} to 3340cm^{-1} except of $3413-3428\text{ cm}^{-1}$. We consider the $3413-3428\text{cm}^{-1}$ as free stretching adsorption of N-H bond and $3329-3340\text{cm}^{-1}$ as the adsorption of intramolecular hydrogen bonds between the hydrogen of N-H and benzene ring (see Table 3).

TABLE 1
The IR Data of N—H Adsorption (CCl₄ as Solvent)

I	C	1.075×10^{-1}	1.153×10^{-2}	1.443×10^{-3}
	W	3418.5 cm^{-1}	3418.3 cm^{-1}	3420.5 cm^{-1}
			3400.0 cm^{-1}	3397.2 cm^{-1}
II	C	1.295×10^{-1}	1.064×10^{-2}	7.703×10^{-3}
	W	3414.1 cm^{-1}	3413.4 cm^{-1}	3416.2 cm^{-1}
			3398.1 cm^{-1}	3398.2 cm^{-1}
III	C	1.440×10^{-1}	1.424×10^{-2}	7.402×10^{-3}
	W	3421.1 cm^{-1}	3421.1 cm^{-1}	3421.7 cm^{-1}
IV	C	*	1.003×10^{-2}	3.661×10^{-3}
	W	*	3421.2 cm^{-1}	3427.1 cm^{-1}
			3398.2 cm^{-1}	3414.0 cm^{-1}
V	C	*	1.252×10^{-2}	6.801×10^{-3}
	W	*	3428.3 cm^{-1}	3425.3 cm^{-1}
				3413.5 cm^{-1}

* can't be dissolved; C: concentration(mol × dm⁻³);

W: wavenumber

TABLE 2
The IR Data of N—H (Benzene and Cyclohexane as Solvent)

		I	II	III	IV	V
H	C($\times 10^{-3}$)	1.942	4.334	5.687	5.181	6.272
		3420.5	3419.8	3420.8	3420.4	3418.8
	W(cm ⁻¹)	3405.7	3408.5	3409.8	3408.0	3405.2
		3399.9	3392.4	3393.7		3426.8
B	C($\times 10^{-3}$)	1.859	6.986	6.884	6.146	6.762
		3413.2	3408.2	3408.4	3410.6	3410.2
	W(cm ⁻¹)	3392.2		3392.2	3398.8	
		3419.8		3419.8	3424.4	

H: cyclohexane as solvent; B: benzene as solvent

C: concentration(mol × dm⁻³); W: wavenumber

TABLE 3
Interpretation of the Adsorption Frequencies

Wavenumber	Interpretation
3413 – 3428cm ⁻¹	Free N – H adsorption
3413 – 3414cm ⁻¹	Hydrogen bonding between hydrogen of N – H and cyclopentadienyl
3405 – 3409cm ⁻¹	Hydrogen bonding between hydrogen of N – H and ferro in ferrocene
3392 – 3400cm ⁻¹	Hydrogen bonding between hydrogen of N – H and benzene ring

In the solution of which cyclohexane as solvent, all compounds studied have small peaks between 3405 – 3409cm⁻¹. These peaks belong to the adsorption of intramolecular hydrogen bonds between the hydrogen of N – H and ferro in ferrocene. The compounds of IV and V have weak adsorptions in 3413 – 3414 cm⁻¹ in CCl₄ solution. These peaks belong to the intramolecular hydrogen bonds between hydrogen of N – H and cyclopentadienyl (see Table 3).

Being a strong electron acceptor, CCl₄ can form electric charge transfer(CT) complexes with ferrocene compounds which are electron donors. In higher concentration (10⁻¹mol * dm⁻³), the ferrocene compounds mainly exist as CT complexes with CCl₄. Because of the steric hindrance, N – H has little probability to form intramolecular bonding and mainly exists in free state. Therefore, there is only one N – H stretching adsorption peak.

In more dilute solution, the probabilities to form CT complexes decrease because of decreasing of the solvend particles, then, N – H has the probability to form weak intramolecular bonding with benzene ring in the molecule. the properties of benzene substituents would influence the formings of intramolecular bonding. the ferrocene compounds have weak adsorptions in the range of 3398 – 3400cm⁻¹ when they have donor substituents(such as CH₃, H) in dilute CCl₄ solution (about 10⁻²mol * dm⁻³). In this case, the adsorption is more intense when the benzene

substituents is CH₃ comparing with H. The compounds nearly haven't the weak adsorption when the benzene substituents are Cl and NO₂. In conclusion, when benzene ring has the electron donor substituents, its density of electron cloud is increased and the ability to combine with hydrogen is strengthened, but acceptor substituents decrease the density of benzene ring electron cloud and the benzene ring has lower or no ability to combine with hydrogen to form intramolecular bonding.

When Br is being the substituent of benzene, it has stronger resonance than that of Cl except of its electron acceptor property. Therefore, the adsorption of the intramolecular bonding between the benzene ring and hydrogen of N—H in spectra can be detected.

For the compounds IV and V, there are bigger steric hindrance comparing to compounds I—III due to their large volume of the substituents, then, they have adsorptions in the range of 3413—3414cm⁻¹ in 10⁻³mol * dm⁻³ CCl₄ solution. Otherwise, the acceptor properties of their substituents decrease the probabilities of forming intramolecular bonding between benzene ring and hydrogen of N—H and increase the probabilities of that between hydrogen of N—H and cyclopentadienyl.

Cyclohexane can't form CT—complexes with methylferrocene or aniline, so that there appear fine structures in spectra. There isn't any intermolecular bonding because of the much dilute solution of compounds in cyclohexane, but the ferro and benzene ring can form intramolecular bonding.

It is easy that ferro in ferrocene loses an electron and becomes ferrocene cation. From the ionization potential of benzene and ferrocene(ferrocene, 7.05ev; benzene ring, 9.2ev), it can be seen that ferro in ferrocene is easier than benzene ring to form hydrogen bonding. The adsorption frequencies of ferro's hydrogen bonding are higher than that of benzene ring's in spectra.

Intermolecular Hydrogen Bonding In the solution of which benzene as solvent, The strong peaks appeared in the solution of which CCl₄ and

cyclohexane as solvents become as weak peaks or disappear. The strongest peaks appear in the range of $3408 - 3413\text{cm}^{-1}$. The peaks become broader and the fine structures disappear.

Being a solvent, like the benzene ring in the molecules, benzene can form hydrogen bonding with the hydrogen of N–H in ferrocene compounds. Then, the ferrocene compounds can form intramolecular hydrogen bonding as well as intermolecular hydrogen bonding with solvent. the adsorption in the range of $3408 - 3413\text{cm}^{-1}$ belongs to interreaction of intra- and intermolecular hydrogen bonding. The broaden peaks demonstrate the influence of intermolecular hydrogen bonding.

In a word, the weak peaks in the range of $3392 - 3390\text{cm}^{-1}$ has been considered as intramolecular hydrogen bonding of benzene ring and hydrogen of N–H, and the adsorption of $3419 - 3424\text{cm}^{-1}$ as the free stretch vibrations of N–H. Therefore, in the solution of which benzene as solvent, the main interreaction is the solvend and the solvent, not the above two kinds of adsorptions.

REFERENCES

1. Semerishin DI, Borovaya OYa., Yurchak AV. Hexacyanoserrates(II) of Aniline, Benzidine and Benzotriazole. *Koord Khim.* 1986;12(4):502.
2. Marsagishvili TA., Khoshtarija DE. Spectroscopy of Outer – sphere Electron Transfer between Ferrocyanide and Ferricyanide Ions in Solution. *Khim. Fiz.* 1987;6(11):1511.
3. Bencivenni L., Ferro D., Pelino M. Teghil R. IR and Raman Spectra of Some Ferrocene Derivatives. *J. Indian Chem. Soc.* 1980;57:1062.
4. Phillips L., Lacey AR., Cooper MK. Analysis of Substituted Ferrocenes by Infrared Spectroscopy. *J. Chem. Soc., Dalton Trans.* 1988;5:1383.

5. Feng Yan, Liu Juzheng, Zhao Wenyun. Vibrational Spectra of Organometallic Compounds. *Huaxue Xuebao* 1988;46(2):131.
6. Ashkinadze LD., Polivin YN., Yanovskii AI., Struchkov YT., Postnov VN. Intramolecular Hydrogen Bonds in Ferrocene-containing β -H ydroxycarbonyl Compounds. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1985;7: 1672.
7. Hofmans H., Geboes P., Desseyn HO. The Infrared Spectra of Complexes with Planar Dithioxamides. *Spectrochim. Acta, Part A* 1986;42A(9):969.
8. Lokshin BV., Kazaryan SG., Ginzburg AG. IR Study of Hydrogen Bonds Formed by π -complexes of Transition Metals in Liquid Xenon Solution. *J. Mol. Struct.* 1988;174:29.
9. Shubina ES., Epshtein LM. Intramolecular Hydrogen Bonds and Conformations of Ferrocenyl-(F) and Nonamethylferrocenylcarbinols (NF). *J. Organomet. Chem.* 1988;346:59.

Received: March 16, 1995

Accepted: April 24, 1995